Developmental influence of the cellular prion protein on the gene expression profile in mouse hippocampus.
نویسندگان
چکیده
The conversion of the cellular prion protein (PrP(C)) to an abnormal and protease-resistant isoform is the key event in prion diseases. Mice lacking PrP(C) are resistant to prion infection, and downregulation of PrP(C) during prion infection prevents neuronal loss and the progression to clinical disease. These results are suggestive of the potential beneficial effect of silencing PrP(C) during prion diseases. However, the silencing of a protein that is widely expressed throughout the central nervous system could be detrimental to brain homeostasis. The physiological role of PrP(C) remains still unclear, but several putative functions (e.g., neuronal development and maintenance) have been proposed. To assess the influence of PrP(C) on gene expression profile in the mouse brain, we undertook a microarray analysis by using RNA isolated from the hippocampus at two different developmental stages: newborn (4.5-day-old) and adult (3-mo-old) mice, both from wild-type and Prnp(0/0) animals. Comparing the different datasets allowed us to identify "commonly" co-regulated genes and "uniquely" deregulated genes during postnatal development. The absence of PrP(C) affected several biological pathways, the most representative being cell signaling, cell-cell communication and transduction processes, calcium homeostasis, nervous system development, synaptic transmission, and cell adhesion. However, there was only a moderate alteration of the gene expression profile in our animal models. PrP(C) deficiency did not lead to a dramatic alteration of gene expression profile and produced moderately altered gene expression levels from young to adult animals. Thus, our results may provide additional support to silencing endogenous PrP(C) levels as therapeutic approach to prion diseases.
منابع مشابه
Gene Expression Profile of Calcium/Calmodulin-Dependent Protein Kinase IIα in the Rat Hippocampus during Morphine Withdrawal
Introduction: Calcium/calmodulin-dependent protein kinase II (CaMKII) is highly expressed in the hippocampus, which has a pivotal role in reward-related memories and morphine dependence. Methods: In the present study, morphine tolerance was induced in male Wistar rats by 7 days repeated morphine injections once daily, and then gene expression profile of α-isoform of CaMKII (CaMKIIα) in the hipp...
متن کاملInvestigating the effects of ibuprofen on the gene expression profile in Hippocampus of mice model of Alzheimer’s disease through bioinformatics analysis
Non-steroidal anti-inflammatory drugs (NSAIDs) identified effective in many diseases. One of which is neurodegenerative diseases including Alzheimer disease (AD). In this study gross alteration of gene expression in AD mice by ibuprofen treatment is investigated via Protein-protein interaction network (PPI) analysis. Expression profiling of microarray dataset GSE67306 was retrieved from GEO dat...
متن کاملInvestigating the effects of ibuprofen on the gene expression profile in Hippocampus of mice model of Alzheimer’s disease through bioinformatics analysis
Non-steroidal anti-inflammatory drugs (NSAIDs) identified effective in many diseases. One of which is neurodegenerative diseases including Alzheimer disease (AD). In this study gross alteration of gene expression in AD mice by ibuprofen treatment is investigated via Protein-protein interaction network (PPI) analysis. Expression profiling of microarray dataset GSE67306 was retrieved from GEO dat...
متن کاملThe Effects of Kainic Acid-Induced Seizure on Gene Expression of Brain Neurotransmitter Receptors in Mice Using RT2 PCR Array
Introduction: Kainic acid (KA) induces neuropathological changes in specific regions of the mouse hippocampus comparable to changes seen in patients with chronic temporal lobe epilepsy (TLE). According to different studies, the expression of a number of genes are altered in the adult rat hippocampus after status epilepticus (SE) induced by KA. This study aimed to quantitatively evaluate changes...
متن کاملChanges in the expression of OCT4 in mouse ovary during estrous cycle
The transcriptional factor OCT4 regulates pluripotency of stem cells and has an important role during oocyte growth. Whereas, its role has remained ambiguous in ovarian tissue during reproductive cycle. Therefore, this study was aimed to investigate the expression patterns of OCT4 in mouse ovaries during the normal estrous cycle. Adult National Medical Research Institute mice were classified as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological genomics
دوره 43 12 شماره
صفحات -
تاریخ انتشار 2011